

Last Update: 6/10, 2018

PepperDB: Self-Evolving Database for Pure DApps

Roy Guo, Sean Fu, Remy Trichard, Peng Lei

www.pepperdb.org

ABSTRACT

PepperDB is a decentralized database that makes
DApp developers build DApps much easier and
lower down blockchain storage cost tremendously,
and with our Pepper Rank (Inspired by Google
PageRank) system, PepperDB is able to
self-evolving continuously.

PepperDB provides a SDK that supports
SQL/NoSQL operations directly on blockchain,
which release developers from coding and testing
complex smart contracts.

PepperDB also achieved best data compression ratio
than anyone else in the market, which has already
been proven inside Alibaba Cloud (Alibaba bought
the license of TerarkDB storage engine, which is an
implementation of our technology). Our Searchable
Compression technology can access data directly on
highly compressed data file, which means it is much
faster than ever (No decompression cost).

PepperDB also supports fully distributed
applications via a DApp Store that is embedded into
wallet. Nowadays, almost all existing DApps were
deployed on centralized servers to handle user
requests, and help users to store / query blockchain
data. This is because most blockchain wallets
doesn’t support client side running environment, in
which case we believe is not a safe enough (users
still need to trust these centralized servers).

This project is trying to put all of these together and
make blockchain a better platform for the world.

1 INTRODUCTION

Lots of blockchain-based applications are emerging,
but we have identified that some critical problems
still have not been solved properly.

DApp Development is Painful. One of the most
famous blockchain that supports smart contract
development is Ethereum. If a Ethereum developer
wants to do something special rather than to make a

simple token or a simple crowdsale, he is likely to
create his own smart contract. But a serious
Ethereum smart contract development requires a
programming language like Solidity or Javascript, a
Ethereum client like Ganache, a test / debug / deploy
environment like Truffle, and some new developers
may need a secure smart contract library like
OpenZeppelin. This is really painful, so PepperDB
wants to make it easier and provides a set of SDKs
that allows developers to store or query data from
blockchain directly using SQL / NoSQL schema.
And for most of cases, smart contract programming
is no longer needed (But is still supported).

Block Data Grow Too Fast. We all know that
blockchain data is growing very fast and there seems
no efficient way to reduce the growth speed. Some
people turn to new path like sharding (Ethereum),
off-chain storage (IPFS) or centralized server groups
(EOS). Each of these methods has their advantages
and disadvantages, we choose to use off-chain
storage in the future (after it has been proven to be
secure). But for the data itself, we are going to make
them grow slower than ever. Our cutting edge
Searchable Compression technology could compress
the whole blockchain dataset into one single block,
which can significantly reduce the total disk size of
the data. From tests in different scenarios, we
achieved 3 to 10 time better compression than other
compression algorithms. And with this great
compression, we can extract data directly on
compressed data file, which has never been done
before.

Most DApps are Still Using Centralized Server.
Most of the world’s DApps are using deployed in a
centralized server now. These centralized servers are
used for handling user requests and interact with
blockchain. This is not pure DApp because users still
need to trust these centralized servers and these
server could been hacked or service down. And this
also requires developer to handle server security,
user privacy properly, which is not a simple task for

most people. PepperDB is trying to build a
completely distributed application platform via a
DApp store and native client side support. Users can
download DApp and run it directly on their own
machine. Since we have best compression and these
DApps don’t need to cached in every node, so the
cost of storage is acceptable under our technology.

Blockchain is Relatively Hard to Upgrade. We
believe all softwares need updates, including
blockchain. Small or simple updates in blockchain
are easy, but for those critical updates like migrate
from PoW to PoS, could hurt some participants,
which sometimes could leads to a hard fork. But for
a blockchain database, we understand that a lot of
work hasn’t be done properly (e.g. the off-chain
storage mechanism is still not proven to be secure),
so a strategy that allows us to upgrade important
components is very useful. To make this happen and
avoid hard forks as much as possible, we are
designing a new voting system based on user
contribution. This means when a user is more
valuable (instead of hold more tokens) to the
network, he will has more power to influence the
result. User contribution is calculated based on their
connection with each other (We call it Pepper Rank,
inspired by Google PageRank).

2 RELATED WORK

High Level Architecture. We want to make things as
simple as we can, and the actual implementation will
be done step by step. Here is our highest level
design:

Figure 1. PepperDB High Level Architecture

It includes several important parts: SDK is a library
that developers use inside their DApps, it helps to
handling data writing and reading. It’s a replacement
of most smart contract. Wallet is used for
transactions or voting. And it also takes the
responsibility of DApp store, which helps users

download DApp and run it directly on their local
machine. Data Node is traditional blockchain
working node. We will split all nodes into on-chain
and off-chain nodes in the future. DApp Storage
Node is used for storing DApp itself and DApp
version history. These data don’t need to put into
blockchain and requires fast access or download.

2.1 Database Protocol

SQL is the most widely used database query
language in the world today, and NoSQL is catching
up these years. They are used for different scenarios
so we would implement both of them in the future.
But the first step would be a simpler one, NoSQL.

Leverage database protocol into blockchain is
actually very easy. A traditional database generally
has a architecture like this:

Figure 2. An Ordinary Database Architecture

If we change the lowest part, file system into
blockchain, a basic version of blockchain database is
done. But as a fully distributed system, we need to
handle data secure, query efficiency and other
critical issues. Relying our understanding of
database technology, we re-designed the blockchain
database within this architecture:

2

Figure 3. Blockchain Database Architecture

2.2 Searchable Compression

The Searchable Compression technology is
originally invented by ourselves and has been
successfully used inside Alibaba Cloud. The main
purpose of this technology, is to compress as much
data as we can into one single block, make the
compression ratio approximately to the its limit and
improve access speed in the same time. Most of
people understand that if someone wants a better
compression, it has to compress more data together
but lose access speed since it requires decompress
before accessing, in other words, its a trade-off. But
for our searchable compression, its not, we improved
both compression ratio and access speed
tremendously (compression ratio improved by 3 ~ 10
times, access speed improved by 10 ~ 200
times).This technology is composed by two
algorithms, CO-Index and PA-Zip. As we all know,
almost all storage systems (e.g. database, blockchain
itself, file system) has a key-value storage engine
layer. In our case, CO-Index is for key / index
compress, PA-Zip is for data / value compress.

2.2.1 CO-Index (Compressed Ordered Index).
Ethereum is using LevelDB as storage engine,
Nebulas is using RocksDB, and traditional database
MySQL is using InnoDB. These famous storage
engine uses different index compression algorithms
but their common point is, the compression ratio is
not good. CO-Index uses three different methods to
improve its compression ratio: Succinct Data
Structure is a memory efficient data structure.
Comparing pointer-based structure, it only uses 1/32
to 1/64 memory to represent a tree structure. Patricia
Trie is a path compression Trie. It compresses all
single-child nodes into one node, save a lot of space
when meeting complex string data. Nested Succinct
Patricia Trie improves the compression ratio even
better. It uses all the compressed path that patricia
trie generated and compress them into a new Trie,
then nest it into previous one.

Here’s a the basic idea of how Patricia Trie works
(Size and Path Length of Patricia Tries: Dynamical
Sources Context):

With any finite set of infinite words produced by X
the same source, we associate a trie, , defined r(X)T
by the following recursive rules:

if , Then is the empty tree.R)(0 ⊘ X = r(X)T

if has a cardinality equal to 1, thenR)(1 x}X = {
consists of a single leaf node represented byr(X)T

,x

if has a cardinality of at least 2, thenR)(2 X r(X)T
is an internal node represented generically by • to
which subtrees are attached,r

r(X) < , r(T X), r(T X), .., r(T X)T = • T a1

 T a2

 . T ar
 >

The edge attaching the subtrie is labeledr(T X)T aj

by the symbol .aj

Figure 4. Patricia Trie and Path Compression

Figure 5. Generate new Patricia Trie by Compressed
Paths

2.2.2 PA-Zip (Point Accessible Zip). All existing
database compression algorithms are using
block-based compression. Its basic idea is to
compress data block by block (e.g. 16KB block).
The reason that people are doing this is because they
have to decompress it before reading the data. So a

3

bigger block means better compression but lower
access speed. This kind of trade-off optimization is
all over the internet. PepperDB solved this problem
by providing a searchable compression technology.
PA-Zip is not block-based, it can compress all data
into one single file (or you can call it a giant block),
and no need to decompress it before reading.

2.2.3 Benchmarks. Our algorithms had been tested
by some of the biggest internet companies in the
world, including Alibaba, Baidu etc. Here are some
results:

1) Bare metal storage engine test (CPU 16 cores, 64
GB memory, TPC-H 550GB dataset):

Figure 6. Random Reading on TPC-H

Figure 7. Compression Ratio on TPC-H

2) Test results from Alibaba

 • About 3.8 TB of raw data

 • After compression with TerarkDB’s algorithm,
data is compressed to about 1.1 TB

 • With outstanding compression ratios, the
reading performance is also 3 to 5 times better

 • This scenario is not our best scenario, and other
engines are highly optimized via Alibaba

Figure 8. Compression Ratio on Alibaba Dataset

Figure 9. Random Reading on Alibaba Dataset

3) Test results from Baidu

 • Comparison made with other engines that were
highly optimized by Baidu

 • Test scenario is not our optimal scenario

 • TokuDB has been abandoned due to poor
performance

 • TerarkDB achieved the best compression ratio
among all engines and our read performance is about
10 times better.

Figure 10. Compression Ratio on Baidu Dataset

4

2.3 DApp Store

Like Apple’s App Store, we would love to integrate
a DApp Store inside our wallet client. This DApp
Store will help users download DApps directly from
our DApp Storage Nodes and run it directly on their
local machine. Here’s the basic workflow of how to
download and run a DApp:

1) Start your client side wallet, the wallet will
then finds a set of fastest DApp storage
nodes (e.g. 10 different nodes).

2) Enter the url / name of target DApp in your
wallet’s search box, the wallet will sends
the query to all connected DApp storage
nodes.

3) Combine the result of the responses from
all DApp storage nodes.

4) Choose your target DApp and install it,
after you install it, the wallet will
automatically send the MD5 signature of
the DApp to all other DApp storage nodes,
and confirm that you are using the correct
one.

5) If the DApp developer set a price for the
DApp, you may need to pay for it to
register your address.

6) Then the developer should pay the cost of
the DApp storage.

As we see, this process is pretty straightforward, and
the most important thing here is to keep DApp
storage nodes professional, fast enough, secure and
of course, profitable. We will setup our own DApp
storage nodes at the beginning, and test the overall
cost and income and make sure every participant
here are happy. Relying our cutting-edge
compression technology, we believe we can save the
storage cost much better than others (3 ~ 10 times
better), so it’s a huge advantage.

2.4 Pepper Rank

Blockchain is very hard to upgrade, for example, if
your platform migrates from PoW to PoS, the miner
won’t happy and may leads to a hard fork. This is
because you are touching their benefit. We can’t
prevent anyone who want to do a hard fork, but what
we can do is keep those most valuable users stay. So
we introduce a new voting strategy based on user
contribution, which defined by Pepper Rank. The
main idea is, if someone important (has a higher

rank) is transfer money to you, then your rank is
increasing.

Link Structure of Addresses. Each address has a set
of connections with other addresses, including send
and receive transactions:

Figure 11. Address / Accounts Links

The definition of Pepper Rank. Let be anu
account. Then let be the set of accounts (u)F u
points to (have transferred tokens to them) and (u)B
be the set of accounts that point to (have receivedu
tokens from them). Let be the number(u)N = F (u)| |
of links from and let be a factor used foru c
normalization (so that the total rank of all accounts is
constant). We begin by dening a simple ranking, R
which is a slightly simplified version of Pepper
Rank:

(u)R = c ∑

vεB(u)
N v

R(v)

Computing Pepper Rank. The computation of
Pepper Rank is fairly straightforward if we ignore
the issues of scale. Let be almost any vector overS
accounts (for example). Then Pepper Rank mayE
be computed as follows:

R0 ← S

loop :

 RRi+1 ← A i

 -d ← R||
|
| i

|
|
|
|1 R||

|
| i+1

|
|
|
|1

 ERi+1 ← Ri+1 + d

 -δ ← R||
|
| i+1

|
|
|
|1 R||

|
| i

|
|
|
|1

while δ > ε

5

Note that the factor increases the rate ofd
convergence and maintains . An alternativeR|| ||1
normalization is to multiply by the appropriateR
factor. The use of may have a small impact on thed
in uence of .E

There are some critical problems here we need to
deal with, especially Anti-Fraud. The most common
way is to generate a lot of address, and give them
some tokens and transfer these tokens back to one
central account. But it actually doesn’t work,
because the connections from those new created
accounts, are not important and their rank is so low
that can almost do nothing to the central account’s
rank. Unlike traditional PageRank, it is even harder
to cheat on this fully distributed token economy.
And of course Anti-Fraud is a long term task for us.

2.5 Off-Chain Storage

We will not put off-chain storage online at our first
few steps. But the basic idea is to use a
proof-of-storage strategy for off-chain consensus,
the architecture of this part is here:

Figure 12. Off-Chain Storage Architecture

2.5.1 Off-Chain Consensus. For those on-chain
data, PepperDB uses traditional methods like PoS or
PoW (doesn’t matter at the moment, both of them
need to be improved in the future). But for other data
which is not necessary to be stored on-chain,
PepperDB saves them into off-chain data nodes.

Paxos protocol assumes all nodes are honest and
none of them are fraudulent nodes. But this is not
realistic in a blockchain environment. So, by
modifying the Paxos protocol we can achieve
byzantine fault tolerance. The basic idea is to add a
new stage before Paxos’s preparation stage – we call
it pre-preparation stage (similar to PBFT, Practical
Byzantine Fault Tolerance).

At the same time, PepperDB uses data node’s
deposit credit and account balance to define its
weight. Data will be changed only after enough
weighted nodes have approved the update. So, if any
node wants to do something evil, the cost would be
too huge and therefore none of the nodes would want
to try it. And of course, we will have
proof-of-storage to make sure each of the nodes are
storing data properly.

2.5.2 Find Off-Chain Data Node. We are
expecting all data nodes’ storage service to be stable
and predictable. So we suggest and encourage
professional teams and hosting companies to host
data nodes. Any other participants could also join the
network as data nodes but it may not be as efficient,
economically speaking. Most of the users in the
network will be only Workers (Help to route queries
to proper data nodes and get token reward).

By credit deposit and online rate reward, the network
will be more and more healthy and strong (and
remain decentralized).

When a developer wants to publish a DApp, he
should first choose how many replicates he wants
and estimate the daily data growth. The network will
suggest him a proper network fee and estimated
availability rate. Then after the developer confirms
these conditions, the data cluster will be created.

After all data nodes are confirmed, everything will
be written into the network as a smart contract, and
then use an algorand-like algorithm to broadcast to
the whole network.

Availability Rate calculation: Let’s assume we have
10 data nodes, each of them has an online
probability . Users’ data would be (i∈1…100) P i
affected only when all replicates data nodes are
down. The overall probability is , is (1)C1

10 − P i i
all data nodes that are storing the same data
replicate. If we assume the average online rate is
60%, the whole dataset will have 99.98% online rate.
Average online rate is 70%, then 99.98% in total and
if average online rate is 80%, the result would be
99.99999%. Just like we mentioned, we encourage
professional teams to host data nodes, so in most
cases the single node online rate will be over 90%.
And besides that, we will also set up official data
nodes to make sure the whole system is working
properly.

6

2.5.3 Online-Rate Calculation. Since we assume
all data nodes are not reliable, we designed an
online-rate calculation algorithm to encourage the
data nodes to remain online as much time as they
can. When data is stored into a data node, each time
the query cannot read data from the node, its
online-rate will be affected. And its credit deposit
will be taken when it hits the offline threshold. If a
data node keeps being offline too often, the network
will replicate its data into other servers and remove it
from the network. Besides that, we have also
designed a proof-of-storage mechanism to make sure
all data nodes store data properly. This mechanism
will automatically execute periodically.

2.5.4 Proof-of-Storage. Data nodes need to be
verified by proof-of-storage, in case some of the
nodes delete everything after they get those data.
Normally the simplest validation logic is: let all
other parallel data nodes who are storing the same
slice of data to sample the same bytes, then ask the
target node to respond with the correct data. This is
simple and effective but takes too much bandwidth.
We will try to use a much better, lower cost way to
achieve the same result:

1) When a worker decides to package a
block, it can choose to take the
responsibility of storage validation.

2) When any DApp needs proof-of-storage
validation (triggered by smart contract),
the current validating worker will pick a
random generated integer and send it to
the data cluster as validation number.

3) After receiving the validation number, the
data node should sample some data from
the start (use total data length mod
validation number). Then encode it by
MD5 and return the encoded hex chars.

4) Validators (e.g. the worker) will verify the
result of all returned hex chars and mark
those un-honest nodes.

5) Validators then pack all information,
including the storage proof into a block
and broadcast it to the whole network.

6) When any other workers receive the
block, they will verify it more times, and
only after a certain number of validators

have confirmed it, this validation process
will be marked as finished.

7) If any data node has a lower online-rate
than the specified threshold, the network
will kick it out of the system and punish it
by confiscating its credit deposit.

3 TOKEN ALLOCATION AND ECONOMY

PepperDB will be use PDT (PepperDB Token) as its
token symbol. The initial amount is 100 million and
each year 5 million new tokens will be generated as
community motivation cost and company expenses.
PDT will be used in different ways:

1) Tokenize traditional internet products, build
a strong connection with the existing
centralize world.

2) Developers can use PDT to rent storage for
DApp distribution and data storage.

3) Users could buy DApps directly inside their
wallet and pay by PDT

4) Transaction fees.

Here’s how we plan to use the initial PDT:

● 40% for fundraising
● 30% for the team
● 21% for previous investors
● 9% for community motivation, including

airdrop, operations, developer plan etc.

REFERENCES

[1] Ankur Gupta, SUCCINCT DATA
STRUCTURES, 2010

[2] J ´er ´emie Bourdon, Size and Path Length of
Patricia Tries: Dynamical Sources Context, 2001

[3] Sergey Brin, Larry Page, The PageRank Citation
Ranking: Bringing Order to the Web, 1998

[4] Nebulas: Decentralized Search Framework, 2018

[5] Satoshi Nakamoto, Bitcoin: A Peer-to-Peer
Electronic Cash System, 2009

7

